Experience with calcareous fly ash in road construction -case study Greece

I. Papayianni, E. Anastasiou, M. Papachristoforou

Fly ash-Greece

- 8 million tons current annual output
- Calcareous fly ash
 - High content in lime and sulfates
 - Exhibits self hardening properties apart from pozzolanic ones

Research work

Utilization of fly ash in road construction

- Stabilization of soils
- Construction of RCC road pavement with fly ash-based binder
- Construction of sub-base with fly ash-based binder

Soil stabilization

Stabilization can be used in areas with weak soil deposit for:

- sub bases
- foundations
- embankments

Soil stabilization means:

- increase load bearing capacity
- reduce swelling problems
- enhance impermeability

can be achieved with a variety of additives including:

- Lime
- Portland cement
- Fly ash or other by-products

- □ Soil: Soil1 and Soil2
- □ Fly ash: FA1, FA2, FA3 and FA4

	Power plant	CaO _{free} (%)	SO ₃ (%)	Fineness R ₄₅ (%)	Apparent specific density (gr/cm ³)
FA1	Amynteo	9.08	6.60	50.53	2.30
FA2	Kardia	7.93	8.09	37.50	2.48
FA3	Ptole/da	3.69	3.85	50.00	2.40
FA4	Amynteo	11.20	6.60	38.50	2.39

□ Soils

- Mechanical an physical properties
 - Atterberg Limits
 - optimum moisture content, max density (modified Proctor method)
 - Californian Bearing Ratio (CBR)

□ Soil-fly ash mixtures (fly ash addition rate 0, 10, 15, 20 and 100% by mass)

- Proctor density, optimum moisture content
- CBR
- Swelling deformation

Groups of mixtures					
Soil1-FA1	Soil1-FA2	Soil2-FA3	Soil2-FA4		
0%FA1	0%FA2	0%FA3	0%FA4		
+10%FA1	+10%FA2	+9%FA3	+9%FA4		
+15%FA1	+15%FA2	+13%FA3	+13%FA4		
+20%FA1	+20%FA2	+17%FA3	+17%FA4		
100%FA1	100%FA2	100%FA3	100%FA4		

	Soil 1	Soil 2
	Value	Value
Atterderg Limits	(%)	(%)
Liquid limit WL	34.00	34.87
Plastic limit WP	17.00	18.15
Plasticity Index P1	17.00	16.72
Mean value of natural moisture w (%)	2.88	2.68

Classification of soils according to Unified Soil Classification System (USCS):
Soil 1 as CL (inorganic argillaceous of low plasticity)
Soil 2 as SW (well-graded gravel and sand).

Modified Proctor method:

	Soil 1	Soil 2
Max dry density (kg/m ³⁾	2030	2095
Optimum moisture (%)	8.6	8.4

	Soil1			Soil2			
No of Knocks	10	30	65	10	30	65	
Dry density (kg/m3)	1818	1875	2030	1791	2021	2097	
CBR (%)	4.0	18.5	27.0	2.9	9.7	23.2	
Swelling (%)	1	0	0	1	0	0	
CBR (%)		18.5			9.7		

Soil stabilization-Experimental program						
	$1000/S_{a}$:11	90%Soil1	85%Soil1	80%Soil1	1000/ EA 1	
SOIITTFAT	100%050111	10%FA1	10%FA1 15%FA1		100%6FA1	
CBR %	18.5	28.0	127.0	97.0	195.0	
Swelling			from 0-3%			
	1000/S = 11	90%Soil1	85%Soil1	80%Soil1	1000/ 54.2	
SOIITTFAZ	100%080111	10%FA2	15%FA2	20%FA2	100%0FA2	
CBR %	18.5	167.0	148.0	144.0	227.0	
Swelling			from 0-5%			
Soil2+EA2	100%50;12	91%Soil2	87%Soil2	83%Soil2	1000/ EA 2	
50112 FA5	100%050112	9%FA3	13%FA3	17%FA3	10070FA5	
CBR %	9.7	27.0	41.0	54.0	-	
Swelling			from 0-1%			
	1000/5-:12	91%Soil2	87%Soil2	83%Soil2	1000/ EA /	
50112 ⊤ ГА4	100%030112	9%FA4	13%FA4	17%FA4	100%0ΓΑ4	
CBR %	9.7	152.0	156.0	181.0	-	
Swelling			from 0-1%			
Laboratory of Building Materials - Aristotle University of Thessaloniki						

The construction of a RCC road pavement and sub-base with a fly ash-based binder

Stakeholders:

- Aristotle University of Thessaloniki (responsible for research and consultancy)
- National Technical University of Athens
- TITAN Cement Industry
- EGNATIA ODOS S.A.
- TERNA Construction Company

Project:

• TEFRODOS 2011-2014

Funds:

• General Secretary of Research and Technology, Greece

Background-Binders

- Portland cement is an excellent high-strength binder which predominates in construction, but is also an energy consuming, high-cost material of low ecological profile
- Under the pressure of reality:
 - Climatic changes and catastrophes
 - Global economic depression
 - Need of longer service life for constructions
- There is an urgency to develop alternative binding systems

The construction of a RCC road pavement with a fly ash-based binding system

- In Greece, only asphaltic concrete is used for road pavements
- There is no tradition in bedding concrete road pavement
- The RCC pavement alternative seems to be the most feasible solution
- The main advantages for such a solution are:
 - Longer service life and lower cost of maintenance
 - Reduced environmental footprint
 - RCC is stronger and resistant to heavy truck circulation
 - Thermal emissions are redacted

The construction of a RCC road pavement with a fly ash-based binding system

Infrared photograph of the Atlanta Hatfield Airport (property of NASA) where asphalt parking lots develop higher temperature compared to concrete parking lots

Steps

RCC construction

- Development of the mixed-type binding system and assessment of its quality
- Proportion of the concrete mixture for roller compaction
- Testing properties of concrete in the fresh and hardened state
- Pilot construction of part of a road pavement
- Measurement of long term strength and resistance to frost scaling

Sub-base construction

- Proctor-CBR tests of soil-fly ash based binder mixtures
- Pilot construction
- Mechanical properties

Development of the mixed type binder and quality assessment

- Aim: 28-d compressive strength of 40 MPa, so as to have on site at least 30 MPa
- Materials (% by mass)
 - Calcareous fly ash 50%
 - Clinker 25%
 - Natural pozzolan 12.5%
 - Limestone filler 12.5%
- Test measurements:
 - Fineness
 - Grinding time
 - Water demand
 - Setting time
 - Le Chatelier volume stability
 - Compressive strength at 2, 7 and 28 days

 →Blended mixed type binder "Tefrocement" Testing according to EN 13282 for Hydraulic Road Binders

Characteristics of the constituents of the hydraulic binder developed

Content/ Property	Cement clinker	Calcareous fly ash	Limestone filler	Natural pozzolan
SiO ₂ (%)	21.35	34.40	0.20	63.80
Al ₂ O ₃ (%)	5.40	13.60	0.20	18.10
$Fe_2O_3(\%)$	3.40	6.10	0.05	4.10
CaO (%)	65.75	32.80	55.00	2.80
MgO (%)	1.60	3.80	0.60	1.00
CaO_{free} (%)	1.30	6.40	n/a	n/a
$SiO_{2-reactive}$ (%)	n/a*	n/a	n/a	35.00
SO ₃ (%)	1.20	6.78	0.00	0.00
L.O.I. (%)	0.00	3.26	44.10	3.20
Insoluble residue (%)	0.00	23.80	0.00	82.80

Properties of the produced mixed type hydraulic binder

Physical properties		Chemical properties	
Blaine (cm ² /g)	9550	L.O.I. (%)	8,40
Eineness (retained at 15 um)	0.4	SO ₃ (%)	3,20
Fineliess (retained at 45 µm) 0		Insoluble residue (%)	26,40
Water requirement (%)	41,5	CaO _{free} (%)	4,80
Initial setting time (min)	210	Chemical analysis	
Le Chatelier dilation (mm)	0,0	SiO ₂ (%)	29,90
2-day compressive strength (MPa)	15 9	Al ₂ O ₃ (%)	12,65
	10,0	Fe ₂ O ₃ (%)	3,80
/-day compressive strength (MPa)	26,3	CaO (%)	42,90
28-day compressive strength (MPa)	40,1	MgO (%)	2,20

Proportioning RCC with fly ash-based hydraulic binder "Tefrocement"

- Required strength: 30 MPa
- Maximum Vebe density (according to ACI 325.10R-95) with Vebe time: 20-40s
- Available aggregates: Crushed limestone of maximum size 31.5 mm or 16 mm
- "Tefrocement" quantity: $\leq 300 \text{ kg/m}^3$
- Water/cementitious ratio: ~ 0.50

Trial mixes series A and B								
Mixture	A1	A2	A3	A4	B1	B2	B3	B4
Hydraulic Road Binder (kg/m³)	280	280	280	280	300	270	280	280
Water (kg/m^3)	153	153	196	163	120	135	150	148
Fine aggregate (kg/m ³)	1096	1096	1096	1096	1096	1096	1096	1096
Coarse aggregate (kg/m ³)	897	897	897	897	897	897	897	897
Max. aggregate size (mm)	16	16	16	16	31.5	31.5	31.5	31.5
superplasticizer (%wt. of binder)	0.0%	1.0%	1.0%	0.0%	1.0%	1.0%	1.0%	0.5%
w/cem	0.54	0.54	0.60	0.58	0.40	0.50	0.54	0.53
Vebe time (s)	-	-	20	60	8	9	60	35
Vebe density (kg/m ³)	2427	2396	2428	2410	2396	-	2389	2404
7-d compr. strength (MPa)	33.5	28.3	22.4	32.4	-	22.0	28.6	31.1
28-d compr. strength (MPa)	43.8	35.7	30.9	46.0	35.4	35.3	37.5	42.3

• Decision to use 280 kg/m³ "Tefrocement"

New series of laboratory test mixtures series A and B, accounting for transport time

Mixture	A5	A6	B5	B6
Hydraulic Road Binder (kg/m ³)	280	280	280	280
Water (kg/m ³)	148	148	159	148
Fine aggregate (kg/m ³)	1096	1095.8	1095.8	1096
Coarse aggregate (kg/m ³)	912.6	912.6	629.2	629.2
Maximum aggregate size (mm)	16	16	31.5	31.5
superplasticizer (%wt. of binder)	0.0%	0.5%	1.0%	0.0%
w/cem	0.53	0.53	0.57	0.53
Vebe time (s), $t=0'$	60	40	12	50
Vebe time (s), $t=30'$	100	80	30	80
Vebe density (kg/m^3) , t=0'	2385	2313	2430	2447
Vebe density (kg/m^3) , t=30'	2420	2410	2415	2400
Electrical hammer density (kg/m³), t=0'	2474	2505	2466	2490
7-d compressive strength (MPa)	31.4	30.7	25.5	33.7
28-d compressive strength (MPa)	45.6	43.4	37.9	49.3

Pilot construction-parameters

- Ground layer with $CBR \ge 18$
- Concrete plant at 30 minutes driving distance
- Continuous feeding of the paver
- Compaction achieved by rollers
- Compaction was measured with Humboldt nuclear gauge

Truck loading

Truck unloading onto paver

Difficulty unloading truck due to delay in transportation

Roller compaction of pavement

Fresh concrete density measured with nuclear gauge

Effective compaction scenario

- 3 non vibrating passes with a 4 ton roller
- 2 vibrating passes with a 10 ton roller
- Maximum single layer thickness achieved: 20 cm

Achieved compaction

• Only with the paver, the compaction achieved was 80%

depth	directly after the paver	after compaction
5 cm	81.8%	90.4%
10 cm	81.2%	91.3%
15 cm	81.0%	90.6%
20 cm	79.7%	89.3%

Joints

• Shrinkage joints: cut every 5.5-6.0 m after hardening, to a depth corresponding to 1/4 - 1/3 of the road thickness

Survey of concrete pavement 2 months after construction

- Core drilling and testing
 - Mechanical properties
 - Freeze-thaw resistance (-25°C to +20°C)

Survey of concrete pavement 2 months after construction

• Mechanical properties of drilled cores

Construction area (average of 6)	1	2	3
pulse velocity u (m/s)	4625	5022	4713
density ρ (kg/m ³)	2295	2394	2345
Compressive strength f_c (MPa)	25.0	32.0	31.8

Crushed limestone 0-150 mm

- 5 and
- 10 % b.w. addition of mixed type binder

Mixture	Optimum moisture content (%)	Max. Dry density (g/cm ³)	CBR (%)
5% binder	6,2	2,335	30
10 % binder	6,4	2,262	55

Binder addition

Mixing and loading

Water addition and mixing

Compaction and final form

Compaction level		Depth (cm)	Compaction Rate (%)	Compressive strength (MPa)
compaction level		5	96,1	
	5% Binder	10	97,1	7,1
		15	96,6	
		5	96,6	
	10% Binder	10	98,6	13,4
		15	101,5	

Sı	ub-base	pilot co	onstruc	ction wit	h fly ash	based	binder
	Properties of drilled cores						
		Average layer thickness (cm)	Density (g/cm³)	UPV (m/s)	Compressive strength (MPa)	Modulus of Elasticity (GPa)	Spliting strength (MPa)
	5% Binder	14,3	2,32	3164	7,2	0,59	0,71
	10% Binder	9,8	2,24	3297	7,51	1,22	1,43

Conclusions-Soil stabilization

Addition of fly ash in soils:

Mechanical properties are significantly increased

Increase of mechanical properties of Soil-FA mixtures					
compared to net soil					
	FA1	FA2	FA3	FA4	
CaO _{free}	9%	8%	4%	11%	
CDD	6.86 times	8 times	5.56 times	18 times higher	
CDK	higher	higher	higher		
Compressive strength	-	-	3 times higher	4.2 times higher	
Modulus of Elasticity	_	_	5.3 times higher	5.5 times higher	

- □ No swelling problems appeared
- Rich in lime fly ashes exhibited higher strength development
- Optimum moisture is increased and maximum dry density is reduced.

Conclusions-Construction of RCC road pavement and sub-base with fly ash-based binder

- The construction of a RCC road with this mixed type binder is feasible
- The technical problems that appeared were properly confronted
- The long term strength and resistance were adequate in order to guarantee a long service life
- Cost reduction
- Successful implementation in sub-base with ordinary equipment
- Layers of lower thickness can be constructed

Thank you for your attention!

